Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 330
Filtrar
1.
Antonie Van Leeuwenhoek ; 117(1): 51, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472444

RESUMO

The current species of Halosegnis and Salella within the class Halobacteria are closely related based on phylogenetic, phylogenomic, and comparative genomic analyses. The Halosegnis species showed 99.8-100.0% 16S rRNA and 96.6-99.6% rpoB' gene similarities to the Salella species, respectively. Phylogenetic and phylogenomic analyses showed that Salella cibi CBA1133T, the sole species of Salella, formed a single tight cluster with Halosegnis longus F12-1T, then with Halosegnis rubeus F17-44T. The average nucleotide identity (ANI), digital DNA-DNA hybridization (dDDH), and average amino acid identity (AAI) values between Salella cibi CBA1133T and Halosegnis longus F12-1T were 99.2, 94.2, and 98.6%, respectively, much higher than the thresholds for species demarcation. This genome-based classification revealed that the genus Salella should be merged with Halosegnis, and Salella cibi should be a later heterotypic synonym of Halosegnis longus. Halophilic archaeal strains DT72T, DT80T, DT85T, and DT116T, isolated from the saline soil of a tidal flat in China, were subjected to polyphasic taxonomic characterization. The phenotypic, chemotaxonomic, phylogenetic, and phylogenomic features indicated that strains DT72T (= CGMCC 1.18925T = JCM 35418T), DT80T (= CGMCC 1.18926T = JCM 35419T), DT85T (= CGMCC 1.19049T = JCM 35605T), and DT116T (= CGMCC 1.19045T = JCM 35606T) represent four novel species of the genera Halorussus, Halosegnis and Haloglomus, respectively, for which the names, Halorussus caseinilyticus sp. nov., Halorussus lipolyticus sp. nov., Halosegnis marinus sp. nov., and Haloglomus litoreum sp. nov., are proposed.


Assuntos
Halobacteriaceae , Análise de Sequência de DNA , Filogenia , RNA Ribossômico 16S/genética , Halobacteriaceae/genética , China , DNA , DNA Arqueal/genética , Ácidos Graxos/química , DNA Bacteriano/genética
2.
Appl Environ Microbiol ; 90(2): e0204823, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38289131

RESUMO

Bacterial and eukaryotic HtrAs can act as an extracytoplasmic protein quality control (PQC) system to help cells survive in stress conditions, but the functions of archaeal HtrAs remain unknown. Particularly, haloarchaea route most secretory proteins to the Tat pathway, enabling them to fold properly in well-controlled cytoplasm with cytosolic PQC systems before secretion. It is unclear whether HtrAs are required for haloarchaeal survival and stress response. The haloarchaeon Natrinema gari J7-2 encodes three Tat signal peptide-bearing HtrAs (NgHtrA, NgHtrB, and NgHtrC), and the signal peptides of NgHtrA and NgHtrC contain a lipobox. Here, the in vitro analysis reveals that the three HtrAs show different profiles of temperature-, salinity-, and metal ion-dependent proteolytic activities and could exhibit chaperone-like activities to prevent the aggregation of reduced lysozyme when their proteolytic activities are inhibited at low temperatures or the active site is disrupted. The gene deletion and complementation assays reveal that NgHtrA and NgHtrC are essential for the survival of strain J7-2 at elevated temperature and/or high salinity and contribute to the resistance of this haloarchaeon to zinc and inhibitory substances generated from tryptone. Mutational analysis shows that the lipobox mediates membrane anchoring of NgHtrA or NgHtrC, and both the membrane-anchored and free extracellular forms of the two enzymes are involved in the stress resistance of strain J7-2, depending on the stress conditions. Deletion of the gene encoding NgHtrB in strain J7-2 causes no obvious growth defect, but NgHtrB can functionally substitute for NgHtrA or NgHtrC under some conditions.IMPORTANCEHtrA-mediated protein quality control plays an important role in the removal of aberrant proteins in the extracytoplasmic space of living cells, and the action mechanisms of HtrAs have been extensively studied in bacteria and eukaryotes; however, information about the function of archaeal HtrAs is scarce. Our results demonstrate that three HtrAs of the haloarchaeon Natrinema gari J7-2 possess both proteolytic and chaperone-like activities, confirming that the bifunctional nature of HtrAs is conserved across all three domains of life. Moreover, we found that NgHtrA and NgHtrC are essential for the survival of strain J7-2 under stress conditions, while NgHtrB can serve as a substitute for the other two HtrAs under certain circumstances. This study provides the first biochemical and genetic evidence of the importance of HtrAs for the survival of haloarchaea in response to stresses.


Assuntos
Halobacteriaceae , Temperatura Alta , Salinidade , Halobacteriaceae/genética , Sinais Direcionadores de Proteínas
3.
FEMS Microbiol Lett ; 3712024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38192037

RESUMO

In this study, a genomic approach was employed to evaluate the metabolic potentials and taxonomic classification of the halophilic genus Halarchaeum. Genomic analysis revealed that Halarchaeum members exhibit a predilection for amino acids as their primary energy source in high-salinity environments over carbohydrates. Genome analysis unveiled the presence of crucial genes associated with metabolic pathways, including the Embden-Meyerhof pathway, semi-phosphorylative Entner-Doudoroff pathway, and the urea cycle. Furthermore, the genomic analysis indicated that Halarchaeum members employ diverse mechanisms for osmotic regulation (encompassing both salt-in and salt-out strategies). Halarchaeum members also encode genes to alleviate acid and heat stress. The average nucleotide identity value between Halarchaeum solikamskense and Halarchaeum nitratireducens exceeded the established threshold (95%-96%) for defining distinct species. This high similarity suggests a close relationship between these two species, prompting the proposal to reclassify Halarchaeum solikamskense as a heterotypic synonym of Halarchaeum nitratireducens. The results of this study contribute to our knowledge of taxonomic classification and shed light on the adaptive strategies employed by Halarchaeum species in their specific ecological niches.


Assuntos
Halobacteriaceae , Filogenia , Halobacteriaceae/genética , Glicólise , Redes e Vias Metabólicas , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano
4.
Artigo em Inglês | MEDLINE | ID: mdl-38194256

RESUMO

Two novel halophilic archaeal strains (XZGYJ-43T and ZJ1T) were isolated from Mangkang ancient solar saltern (Tibet, PR China) and Zhujiang river inlet (Guangdong, PR China), respectively. The comparison of the 16S rRNA gene sequences revealed that strain XZGYJ-43T is related to the current species of the family Halobacteriaceae (89.2-91.7% similarity) and strain ZJ1T showed 94.7-98.3% similarity to the current species of the genus Haladaptatus. Phylogenetic analyses based on 16S rRNA genes, rpoB' genes and genomes indicated that strain XZGYJ-43T is separate from the related genera, Halocalculus, Salarchaeum and Halarchaeum of the family Halobacteriaceae, and strain ZJ1T tightly clusters with the current species of the genus Haladaptatus. The average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity values between strain XZGYJ-43T and the current species of the family Halobacteriaceae were 71-75, 20-25 and 59-68 %, and these values between strain ZJ1T and the current species of the genus Haladaptatus were 77-81, 27-32 and 76-82 %, respectively, clearly below the thresholds for prokaryotic species demarcation. These two strains could be distinguished from their relatives according to differential phenotypic characteristics. The major polar lipids of strain XZGYJ-43T were phosphatidic acid (PA), phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me), mannosyl glucosyl diether (DGD-1; DGD-PA) and sulphated mannosyl glucosyl diether (S-DGD-1; S-DGD-PA), and those of strain ZJ1T were PA, PG, PGP-Me, DGD-PA, S-DGD-1 (S-DGD-PA) and sulphated galactosyl mannosyl glucosyl diether. Based on phenotypic, phylogenetic and genomic data, strain XZGYJ-43T (=CGMCC 1.13890T=JCM 33735T) represents a novel species of a new genus within the family Halobacteriaceae, and strain ZJ1T (=CGMCC 1.18785T=JCM 34917T) represents a novel species of the genus Haladaptatus, for which the names Halospeciosus flavus gen. nov., sp. nov. and Haladaptatus caseinilyticus sp. nov. are proposed, respectively.


Assuntos
Halobacteriaceae , Halobacteriales , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/química , Halobacteriaceae/genética , Fosfatidilgliceróis
5.
Artigo em Inglês | MEDLINE | ID: mdl-38197785

RESUMO

Two extremely halophilic archaeal strains, GSLN9T and XZYJT29T, were isolated from the saline soil in different regions of western China. Both strains GSLN9T and XZYJT29T have two 16S rRNA genes with similarities of 95.1 and 94.8 %, respectively. Strain GSLN9T was mostly related to the genus Halomicrococcus based on 16S rRNA (showing 91.0-96.0 % identities) and rpoB' genes (showing 92.0 % identity). Strain XZYJT29T showed 92.1-97.6 % (16S rRNA gene) and 91.4-93.1 % (rpoB' gene) sequence similarities to its relatives in the genus Halosimplex, respectively. The polar lipid profile of strain GSLN9T included phosphatidic acid (PA), phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me), phosphatidylglycerol sulphate (PGS), sulphated mannosyl glucosyl diether (S-DGD-1) and sulphated galactosyl mannosyl glucosyl diether (S-TGD-1), mostly similar to that of Halomicrococcus hydrotolerans H22T. PA, PG, PGP-Me, S-DGD-1 (S-DGD-PA), S2-DGD, S-TGD-1 and an unidentified glycolipid were detected in strain XZYJT29T; this polar lipid composition is similar to those of members of the genus Halosimplex. The average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity values between these two strains and their relatives of the genera Halomicrococcus and Halosimplex were no more than 82, 27 and 80 %, respectively, much lower than the thresholds for species demarcation. Other phenotypic characterization results indicated that strains GSLN9T and XZYJT29T can be differentiated from the current species of the genera Halomicrococcus and Halosimplex, respectively. These results revealed that strains GSLN9T (=CGMCC 1.15215T=JCM 30842T) and XZYJT29T (=CGMCC 1.15828T=JCM 31853T) represent novel species of Halomicrococcus and Halosimplex, for which the names Halomicrococcus gelatinilyticus sp. nov. and Halosimplex aquaticum sp. nov. are proposed.


Assuntos
Halobacteriaceae , Halobacteriales , RNA Ribossômico 16S/genética , Filogenia , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/química , Halobacteriaceae/genética , Fosfatidilgliceróis , Solo , Sulfatos
6.
Braz J Microbiol ; 54(4): 2927-2937, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37801222

RESUMO

Hyperthermophile microorganisms have been discovered worldwide, and several studies regarding biodiversity and the potential biotechnological applications have been reported. In this work, we describe for the first time the diversity of hyperthermophile communities in the Calientes Geothermal Field (CGF) located 4400 m above sea level in Tacna Region, Perú. Three hot springs were monitored and showed a temperature around 84 to 88 °C, for the microbiome analyzed was taken by sampling of sediment and water (pH 7.3-7.6). The hyperthermophile diversity was determined by PCR, DGGE, and DNA sequencing. The sediments analyzed showed a greater diversity than water samples. Sediments showed a more abundant population of bacteria than archaea, with the presence of at least 9 and 5 phylotypes, respectively. Most interestingly, in some taxa of bacteria (Bacillus) and archaea (Haloarcula and Halalkalicoccus), any of operational taxonomic units (OTUs) have not been observed before in hyperthermophile environments. Our results provide insight in the hyperthermophile diversity and reveal the possibility to develop new biotechnological applications based on the kind of environments.


Assuntos
Halobacteriaceae , Fontes Termais , Microbiota , Peru , Archaea/genética , Bactérias/genética , Halobacteriaceae/genética , Fontes Termais/microbiologia , Biodiversidade , Água , Filogenia , RNA Ribossômico 16S/genética
7.
FEBS Lett ; 597(18): 2334-2344, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37532685

RESUMO

The cell membrane of Halobacterium salinarum contains a retinal-binding photoreceptor, sensory rhodopsin II (HsSRII), coupled with its cognate transducer (HsHtrII), allowing repellent phototaxis behavior for shorter wavelength light. Previous studies on SRII from Natronomonas pharaonis (NpSRII) pointed out the importance of the hydrogen bonding interaction between Thr204NpSRII and Tyr174NpSRII in signal transfer from SRII to HtrII. Here, we investigated the effect on phototactic function by replacing residues in HsSRII corresponding to Thr204NpSRII and Tyr174NpSRII . Whereas replacement of either residue altered the photocycle kinetics, introduction of any mutations at Ser201HsSRII and Tyr171HsSRII did not eliminate negative phototaxis function. These observations imply the possibility of the presence of an unidentified molecular mechanism for photophobic signal transduction differing from NpSRII-NpHtrII.


Assuntos
Proteínas Arqueais , Halobacteriaceae , Rodopsinas Sensoriais , Rodopsinas Sensoriais/genética , Rodopsinas Sensoriais/química , Rodopsinas Sensoriais/metabolismo , Halobacterium salinarum/genética , Halobacterium salinarum/química , Halobacterium salinarum/metabolismo , Halobacteriaceae/genética , Halobacteriaceae/metabolismo , Transdução de Sinais , Proteínas Arqueais/metabolismo , Halorrodopsinas/genética , Halorrodopsinas/química , Halorrodopsinas/metabolismo
8.
Extremophiles ; 27(3): 21, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37548679

RESUMO

Halocins, the proteinaceous antimicrobial agents produced by haloarchaea, may be used for the preservation of salted foods and the treatment of diseases. For their application and function explanation, it is necessary to produce the active recombinants. In this work, a haloarchaeal strain producing halocin was isolated from the salt-fermented shrimp and identified as Natrinema sp. RNS21 by 16S rRNA gene sequence analysis. From 1 L of RNS21 culture, about 0.32 mg of halocin with 96% purity was obtained. Based on the molecular weight, stability and amino acid sequence alignment, the antimicrobial peptide belonged to the halocin C8 (HalC8) family. HalC8 was expressed by fusion with glutathione-S-transferase (GST) in E. coli, followed by affinity purification and enterokinase (EK) cleavage. About 6.2 mg of recombinant HalC8 with 95% purity was obtained from 1 L of E. coli culture. MALDI-TOF-MS and RP-HPLC analysis indicated that the molecular weight and folding pattern of purified recombinant HalC8 were the same as those of native HalC8. Recombinant HalC8 showed obvious inhibitory activity against Haloferax volcanii. Contrast to native HalC8, the active recombinant HalC8 could be easily produced in a short time with a high yield.


Assuntos
Escherichia coli , Halobacteriaceae , Escherichia coli/genética , Peptídeos Antimicrobianos , RNA Ribossômico 16S , Halobacteriaceae/genética
9.
Microbiol Spectr ; 11(4): e0028823, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37347159

RESUMO

The evolutionary relationship between arginine and lysine biosynthetic pathways has been well established in bacteria and hyperthermophilic archaea but remains largely unknown in haloarchaea. Here, the endogenous CRISPR-Cas system was harnessed to edit arginine and lysine biosynthesis-related genes in the haloarchaeon Natrinema gari J7-2. The ΔargW, ΔargX, ΔargB, and ΔargD mutant strains display an arginine auxotrophic phenotype, while the ΔdapB mutant shows a lysine auxotrophic phenotype, suggesting that strain J7-2 utilizes the ArgW-mediated pathway and the diaminopimelate (DAP) pathway to synthesize arginine and lysine, respectively. Unlike the ArgD in Escherichia coli acting as a bifunctional aminotransferase in both the arginine biosynthesis pathway and the DAP pathway, the ArgD in strain J7-2 participates only in arginine biosynthesis. Meanwhile, in strain J7-2, the function of argB cannot be compensated for by its evolutionary counterpart ask in the DAP pathway. Moreover, strain J7-2 cannot utilize α-aminoadipate (AAA) to synthesize lysine via the ArgW-mediated pathway, in contrast to hyperthermophilic archaea that employ a bifunctional LysW-mediated pathway to synthesize arginine (or ornithine) and lysine from glutamate and AAA, respectively. Additionally, the replacement of a 5-amino-acid signature motif responsible for substrate specificity of strain J7-2 ArgX with that of its hyperthermophilic archaeal homologs cannot endow the ΔdapB mutant with the ability to biosynthesize lysine from AAA. The in vitro analysis shows that strain J7-2 ArgX acts on glutamate rather than AAA. These results suggest that the arginine and lysine biosynthetic pathways of strain J7-2 are highly specialized during evolution. IMPORTANCE Due to their roles in amino acid metabolism and close evolutionary relationship, arginine and lysine biosynthetic pathways represent interesting models for probing functional specialization of metabolic routes. The current knowledge with respect to arginine and lysine biosynthesis is limited for haloarchaea compared to that for bacteria and hyperthermophilic archaea. Our results demonstrate that the haloarchaeon Natrinema gari J7-2 employs the ArgW-mediated pathway and the DAP pathway for arginine and lysine biosynthesis, respectively, and the two pathways are functionally independent of each other; meanwhile, ArgX is a key determinant of substrate specificity of the ArgW-mediated pathway in strain J7-2. This study provides new clues about haloarchaeal amino acid metabolism and confirms the convenience and efficiency of endogenous CRISPR-Cas system-based genome editing in haloarchaea.


Assuntos
Halobacteriaceae , Lisina , Lisina/metabolismo , Arginina/metabolismo , Vias Biossintéticas/genética , Sistemas CRISPR-Cas , Edição de Genes , Aminoácidos/metabolismo , Halobacteriaceae/genética , Halobacteriaceae/metabolismo , Bactérias/genética , Glutamatos/genética , Glutamatos/metabolismo
10.
Nat Commun ; 14(1): 1827, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005419

RESUMO

Several groups of bacteria have complex life cycles involving cellular differentiation and multicellular structures. For example, actinobacteria of the genus Streptomyces form multicellular vegetative hyphae, aerial hyphae, and spores. However, similar life cycles have not yet been described for archaea. Here, we show that several haloarchaea of the family Halobacteriaceae display a life cycle resembling that of Streptomyces bacteria. Strain YIM 93972 (isolated from a salt marsh) undergoes cellular differentiation into mycelia and spores. Other closely related strains are also able to form mycelia, and comparative genomic analyses point to gene signatures (apparent gain or loss of certain genes) that are shared by members of this clade within the Halobacteriaceae. Genomic, transcriptomic and proteomic analyses of non-differentiating mutants suggest that a Cdc48-family ATPase might be involved in cellular differentiation in strain YIM 93972. Additionally, a gene encoding a putative oligopeptide transporter from YIM 93972 can restore the ability to form hyphae in a Streptomyces coelicolor mutant that carries a deletion in a homologous gene cluster (bldKA-bldKE), suggesting functional equivalence. We propose strain YIM 93972 as representative of a new species in a new genus within the family Halobacteriaceae, for which the name Actinoarchaeum halophilum gen. nov., sp. nov. is herewith proposed. Our demonstration of a complex life cycle in a group of haloarchaea adds a new dimension to our understanding of the biological diversity and environmental adaptation of archaea.


Assuntos
Halobacteriaceae , Streptomyces , Hifas/genética , Proteômica , Filogenia , RNA Ribossômico 16S/genética , Streptomyces/genética , Halobacteriaceae/genética , Esporos , Diferenciação Celular , Análise de Sequência de DNA , China
11.
Extremophiles ; 27(1): 9, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37000350

RESUMO

Four extremely halophilic archaeal strains (ZJ2T, BND6T, DT87T, and YPL30T) were isolated from marine environments and a salt mine in China. The 16S rRNA and rpoB' gene sequence similarities among strains ZJ2T, BND6T, DT87T, YPL30T and the current species of Natrinema were 93.2-99.3% and 89.2-95.8%, respectively. Both phylogenetic and phylogenomic analyses revealed that strains ZJ2T, BND6T, DT87T, and YPL30T cluster with the Natrinema members. The overall genome-related indexes (ANI, isDDH, and AAI) among these four strains and the current species of genus Natrinema were 70-88%, 22-43% and 75-89%, respectively, clearly below the threshold values for species boundary. Strains ZJ2T, BND6T, DT87T, and YPL30T could be distinguished from the related species according to differential phenotypic characteristics. The major polar lipids of the four strains were phosphatidic acid (PA), phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me), sulfated mannosyl glucosyl diether (S-DGD-1), and disulfated mannosyl glucosyl diether (S2-DGD). The phenotypic, chemotaxonomic, phylogenetic and phylogenomic features indicated that strains ZJ2T (= CGMCC 1.18786 T = JCM 34918 T), BND6T (= CGMCC 1.18777 T = JCM 34909 T), DT87T (= CGMCC 1.18921 T = JCM 35420 T), and YPL30T (= CGMCC 1.15337 T = JCM 31113 T) represent four novel species of the genus Natrinema, for which the names, Natrinema caseinilyticum sp. nov., Natrinema gelatinilyticum sp. nov., Natrinema marinum sp. nov., and Natrinema zhouii sp. nov., are proposed.


Assuntos
Glicolipídeos , Halobacteriaceae , Filogenia , RNA Ribossômico 16S/genética , Cloreto de Sódio , Halobacteriaceae/genética , China , DNA Arqueal/genética , Análise de Sequência de DNA
12.
Genetica ; 151(2): 133-152, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36795306

RESUMO

Halophilic archaea are polyextremophiles with the ability to withstand fluctuations in salinity, high levels of ultraviolet radiation, and oxidative stress, allowing them to survive in a wide range of environments and making them an excellent model for astrobiological research. Natrinema altunense 4.1R is a halophilic archaeon isolated from the endorheic saline lake systems, Sebkhas, located in arid and semi-arid regions of Tunisia. It is an ecosystem characterized by periodic flooding from subsurface groundwater and fluctuating salinities. Here, we assess the physiological responses and genomic characterization of N. altunense 4.1R to UV-C radiation, as well as osmotic and oxidative stresses. Results showed that the 4.1R strain is able to survive up to 36% of salinity, up to 180 J/m2 to UV-C radiation, and at 50 mM of H2O2, a resistance profile similar to Halobacterium salinarum, a strain often used as UV-C resistant model. In order to understand the genetic determinants of N. altunense 4.1R survival strategy, we sequenced and analyzed its genome. Results showed multiple gene copies of osmotic stress, oxidative stress, and DNA repair response mechanisms supporting its survivability at extreme salinities and radiations. Indeed, the 3D molecular structures of seven proteins related to responses to UV-C radiation (excinucleases UvrA, UvrB, and UvrC, and photolyase), saline stress (trehalose-6-phosphate synthase OtsA and trehalose-phosphatase OtsB), and oxidative stress (superoxide dismutase SOD) were constructed by homology modeling. This study extends the abiotic stress range for the species N. altunense and adds to the repertoire of UV and oxidative stress resistance genes generally known from haloarchaeon.


Assuntos
Halobacteriaceae , Raios Ultravioleta , Ecossistema , Peróxido de Hidrogênio , Halobacteriaceae/genética , Estresse Oxidativo , Genômica
13.
mBio ; 13(3): e0071622, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35420474

RESUMO

Phosphorothioate (PT) modification, a sequence-specific modification that replaces the nonbridging oxygen atom with sulfur in a DNA phosphodiester through the gene products of dndABCDE or sspABCD, is widely distributed in prokaryotes. DNA PT modification functions together with gene products encoded by dndFGH, pbeABCD, or sspE to form defense systems that can protect against invasion by exogenous DNA particles. While the functions of the multiple enzymes in the PT system have been elucidated, the exact role of DndE in the PT process is still obscure. Here, we solved the crystal structure of DndE from the haloalkaliphilic archaeal strain Natronorubrum bangense JCM10635 at a resolution of 2.31 Å. Unlike the tetrameric conformation of DndE in Escherichia coli B7A, DndE from N. bangense JCM10635 exists in a monomeric conformation and can catalyze the conversion of supercoiled DNA to nicked or linearized products. Moreover, DndE exhibits preferential binding affinity to nicked DNA by virtue of the R19- and K23-containing positively charged surface. This work provides insight into how DndE functions in PT modification and the potential sulfur incorporation mechanism of DNA PT modification. IMPORTANCE DndABCDE proteins have been demonstrated to catalyze DNA PT modification with the nonbridging oxygen in the DNA sugar-phosphate backbone replaced by sulfur. In the PT modification pathway, DndA exerts cysteine desulfurase activity capable of catalyzing the mobilization of sulfur from l-cysteine, which involves the ion-sulfur cluster assembly of DndC. This is regarded as the initial step of the DNA PT modification. Moreover, DndD has ATPase activity in vitro, which is believed to provide energy for the oxygen-sulfur swap, while the function of DndE is unknown. However, the exact function of the key enzyme DndE remains to be elucidated. By determining the structure of DndE from the haloalkaliphilic strain Natronorubrum bangense JCM10635, we showed that the archaeal DndE adopts a monomer conformation. Notably, DndE can introduce nicks to supercoiled DNA and exhibits a binding preference for nicked DNA; the nicking is believed to be the initial step for DNA to facilitate the sulfur incorporation.


Assuntos
DNA Super-Helicoidal , Halobacteriaceae , DNA/metabolismo , DNA Bacteriano/metabolismo , DNA Super-Helicoidal/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Halobacteriaceae/genética , Halobacteriaceae/metabolismo , Oxigênio/metabolismo , Enxofre/metabolismo
14.
Appl Environ Microbiol ; 88(8): e0024622, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35348390

RESUMO

In response to high-salt conditions, haloarchaea export most secretory proteins through the Tat pathway in folded states; however, it is unclear why some haloarchaeal proteins are still routed to the Sec pathway. SptE is an extracellular subtilase of Natrinema sp. strain J7-2. Here, we found that SptE precursor comprises a Sec signal peptide, an N-terminal propeptide, a catalytic domain, and a long C-terminal extension (CTE) containing seven domains (C1 to C7). SptE is produced extracellularly as a mature form (M180) in strain J7-2 and a proform (ΔS) in the ΔsptA mutant strain, indicating that halolysin SptA mediates the conversion of the secreted proform into M180. The proper folding of ΔS is more efficient in the presence of NaCl than KCl. ΔS requires SptA for cleavage of the N-terminal propeptide and C-terminal C6 and C7 domains to generate M180, accompanied by the appearance of autoprocessing product M120 lacking C5. At lower salinities or elevated temperatures, M180 and M120 could be autoprocessed into M90, which comprises the catalytic and C1 domains and has a higher activity than M180. When produced in Haloferax volcanii, SptE could be secreted as a properly folded proform, but its variant (TSptE) with a Tat signal peptide does not fold properly and suffers from severe proteolysis extracellularly; meanwhile, TSptE is more inclined to aggregate intracellularly than SptE. Systematic domain deletion analysis reveals that the long CTE is an important determinant for secretion of SptE via the Sec rather than Tat pathway to prevent enzyme aggregation before secretion. IMPORTANCE While Tat-dependent haloarchaeal subtilases (halolysins) have been extensively studied, the information about Sec-dependent subtilases of haloarchaea is limited. Our results demonstrate that proper maturation of Sec-dependent subtilase SptE of Natrinema sp. strain J7-2 depends on the action of halolysin SptA from the same strain, yielding multiple hetero- and autocatalytic mature forms. Moreover, we found that the different extra- and intracellular salt types (NaCl versus KCl) of haloarchaea and the long CTE are extrinsic and intrinsic factors crucial for routing SptE to the Sec rather than Tat pathway. This study provides new clues about the secretion and adaptation mechanisms of Sec substrates in haloarchaea.


Assuntos
Halobacteriaceae , Cloreto de Sódio , Halobacteriaceae/genética , Halobacteriaceae/metabolismo , Sinais Direcionadores de Proteínas , Serina Endopeptidases , Cloreto de Sódio/metabolismo
15.
Arch Microbiol ; 204(3): 176, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35166931

RESUMO

Two extremely halophilic strains, designated SYSU A558-1T and SYSU A121-1, were isolated from a saline sediment sample collected from Aiding salt-lake, China. Cells of strains SYSU A558-1T and SYSU A121-1 were Gram-stain-negative, coccoid, and non-motile. The strains were aerobic and grew at NaCl concentration of 10-30% (optimum, 20-22%), at 20-55 °C (optimum, 37-42 °C) and at pH 6.5-8.5 (optimum, 7.0-8.0). Cells lysed in distilled water. The polar lipids were phosphatidyl choline, phosphatidylglycerol phosphate methyl ester, disulfated diglycosyl diether-1 and unidentified glycolipid. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the two strains SYSU A558-1T and SYSU A121-1 were closely related to the membranes of the genus Haloterrigena. Phylogenetic and phylogenomic trees of strains SYSU A558-1T and SYSU A121-1 demonstrated a robust clade with Haloterrigena turkmenica, Haloterrigena salifodinae and Haloterrigena salina. The genomic DNA G + C content of strains SYSU A558-1T and SYSU A121-1 were 65.8 and 65.0%, respectively. Phenotypic, phylogenetic, chemotaxonomic and genome analysis suggested that the two strains SYSU A558-1T and SYSU A121-1 represent a novel species of the genus Haloterrigena, for which the name Haloterrigena gelatinilytica sp. nov. is proposed. The type strain is SYSU A558-1T (= KCTC 4259T = CGMCC 1.15953T).


Assuntos
Halobacteriaceae , Lagos , China , DNA Arqueal/genética , Halobacteriaceae/genética , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio
16.
Curr Microbiol ; 79(2): 51, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34982242

RESUMO

A halophilic archaeon, designated strain LS1_42T, was isolated from Sambhar Salt Lake, Rajasthan, India. Cells were non-motile, coccoid, Gram-stain-variable and present in irregular clusters with light pink pigmented colonies. The strain was strictly aerobic and able to grow without Mg2+. Growth of the strain LS1_42T was observed at 25-45 °C, pH 7.0-11.0 and NaCl concentrations of 10-35% (w/v). The nearest phylogenetic neighbor of strain LS1_42T was Natronococcus amylolyticus Ah-36T based on 16S rRNA and rpoB' genes with similarity of 95.4% and 91.9%, respectively. Phylogenetic analysis based on 16S rRNA gene, rpoB' gene and whole-genome sequences indicate that the strain LS1_42T belongs to the genus Natronococcus and is closely related to N. amylolyticus. The genome size was 5.38 Mb with 98.9% completeness. The DNA G + C content of the strain LS1_42T was 63.0 mol%. The average nucleotide identity, average amino acid identity and DNA-DNA hybridization values between LS1_42T and N. amylolyticus Ah-36T were 81.3%, 77.7% and 24.8%, respectively. The major polar lipids detected were phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester. On the basis of phenotypic, chemotaxonomic and genome-based analysis, strain LS1_42T represents a novel species within the genus Natronococcus, for which the name Natronococcus pandeyae sp. nov. is proposed. The type strain is LS1_42T (MCC 3654T = JCM 33003T = KCTC 4280T = CGMCC 1.16738T).


Assuntos
Halobacteriaceae , Natronococcus , DNA Arqueal/genética , Halobacteriaceae/genética , Índia , Lagos , Hibridização de Ácido Nucleico , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
17.
Biotechnol Appl Biochem ; 69(4): 1482-1488, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34245190

RESUMO

In the present study, we report the complete genome sequencing of Haloterrigena daqingensis species. The genome of H. daqingensis JX313T consisted of a circular chromosome with three plasmids. The genome size and G+C content were estimated to be 3835796 bp and 61.7%, respectively. A total of 4158 genes were predicted with six rRNAs and 45 tRNAs. Metabolic pathway analysis suggests that H. daqingensis JX313T codes for all the necessary genes responsible to sustain its life at saline environment. The pan-genome analysis suggests that the number of singleton-gene between H. daqingensis and other Haloterrigena species varied. The study not only helps us understand H. daqingensis strategy for dealing with high stress, but it also provides an overview of its genomic makeup.


Assuntos
Halobacteriaceae , DNA Arqueal/genética , Halobacteriaceae/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
18.
Folia Microbiol (Praha) ; 67(1): 71-79, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34510323

RESUMO

Halophilic archaea are one of the microorganism groups that have adapted to living in high saline environments and are important in terms of their potential use in biotechnology industry. One of the most important compounds they have, carotenoid, is used in food, cosmetics, and medical industries. The selected strain was identified as an extremely halophilic and thermophilic archaeon, Haloterrigena thermotolerans K15, based on morphological, biochemical, and physiological evidence as well as 16S rRNA analysis and screened by a scanning electron microscope and an atomic force microscope for the first time. The carotenoid contents of H. thermotolerans K15 isolated from Salt Lake (Tuz Gölü, Turkey) were determined by RP-HPLC-DAD and their isomers were characterized according to UV-Vis spectra by cis peak intensity and spectral fine structure. In addition to all-trans bacterioruberin as a major carotenoid, many isomers of the bacterioruberin such as monoanhydrobacterioruberin and bisanhydrobacterioruberin were also found. The antioxidant activity of carotenoid extract from H. thermotolerans was analyzed by the 2,2-diphenyl-1-picrylhydrazyl radical scavenging method. The carotenoid extract showed antioxidant activity statistically significantly higher than ascorbic acid and butylated hydroxytoluene as reference compounds (p < 0.05). This is the first study about carotenoid characterization and antioxidant activity of H. thermotolerans K15. The obtained results suggest the potential use of H. thermotolerans K15 products as a substitute for synthesized chemical carotenoids and antioxidants.


Assuntos
Antioxidantes , Halobacteriaceae , Carotenoides , Halobacteriaceae/genética , RNA Ribossômico 16S/genética
19.
Extremophiles ; 26(1): 6, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34962596

RESUMO

Three halophilic archaeal strains, Gai1-5T, SEDH52T and SQT7-1T were isolated from Gaize salt lake and Xiadi salt lake in Tibet, and saline soil from Xinjiang, respectively. Phylogenetic analysis based on 16S rRNA gene and rpoB' gene sequences showed that these three strains formed different branches separating them from Haloprofundus halophilus NK23T (97.7-98.3% similarities for 16S rRNA gene and 94.7-94.8% similarities for rpoB' gene, respectively) and Haloprofundus marisrubri SB9T (94.7-96.4% similarities for 16S rRNA gene and 92.3-93.2% similarities for rpoB' gene, respectively). Several phenotypic characteristics distinguish the strains Gai1-5 T, SEDH52T and SQT7-1T from Haloprofundus halophilus NK23T and Haloprofundus marisrubri SB9T. The average nucleotide identity (ANI) and in silico DNA-DNA hybridization (isDDH) values among the three strains and current Haloprofundus members were in the range of 83.3-88.3% and 27.2-35.7%, respectively, far below the species boundary threshold values. The major polar lipids of three strains were phosphatidic acid (PA), phosphatidylglycerol (PG), phosphatidylglycerol sulphate (PGS), phosphatidylglycerol phosphate methyl ester (PGP-Me), sulfated mannosyl glucosyl diether (S-DGD-1), mannosyl glucosyl diether-phosphatidic acid (DGD-PA) and sulfated mannosyl glucosyl diether-phosphatidic acid (S-DGD-PA). These results showed that strains Gai1-5T (= CGMCC 1.16079T = JCM 33561T), SQT7-1T (= CGMCC 1.16063T = JCM 33553 T) and SEDH52T (= CGMCC 1.17434T) represented three novel species in the genus Haloprofundus, for which the names Haloprofundus salilacus sp. nov., Haloprofundus salinisoli sp. nov., and Haloprofundus halobius sp. nov. are proposed.


Assuntos
Halobacteriaceae , Lagos , Composição de Bases , China , DNA Arqueal , Glicolipídeos , Halobacteriaceae/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo
20.
Antonie Van Leeuwenhoek ; 114(12): 2065-2082, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34604935

RESUMO

Three novel halophilic archaea were isolated from seawater and sediment near Yeoungheungdo Island, Republic of Korea. The genome size and G + C content of the isolates MBLA0076T, MBLA0077T, and MBLA0078T were 3.56, 3.48, and 3.48 Mb and 61.7, 60.8, and 61.1 mol%, respectively. The three strains shared 98.5-99.5 % sequence similarity of the 16 S rRNA gene, whereas their sequence similarity to the 16 S rRNA gene of type strains was below 98.5 %. Phylogenetic analysis based on sequences of the 16 S rRNA and RNA polymerase subunit beta genes indicated that the isolates belonged to the genus Haloferax. The orthologous average nucleotide identity, average amino-acid identity, and in silico DNA-DNA hybridization values were below species delineation thresholds. Pan-genomic analysis indicated that the three novel strains and 11 reference strains had 8981 pan-orthologous groups in total. Fourteen Haloferax strains shared 1766 core pan-genome orthologous groups, which were mainly related to amino acid transport and metabolism. Cells of the three isolates were gram-negative, motile, red-pink pigmented, and pleomorphic. The strains grew optimally at 30 °C (MBLA0076T) and 40 °C (MBLA0077T, MBLA0078T) in the presence of 1.28 M (MBLA0077T) and 1.7 M (MBLA0076T, MBLA0078T) NaCl and 0.1 M (MBLA0077T), 0.2 M (MBLA0076T), and 0.3 M (MBLA0078T) MgCl2·6H2O at pH 7.0-8.0. Cells of all isolates lysed in distilled water; the minimum NaCl concentration necessary to prevent lysis was 0.43 M. The major polar lipids of the three strains were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, and sulphated diglycosyl archaeol-1. Based on their phenotypic and genotypic properties, MBLA0076T, MBLA0077T, and MBLA0078T were described as novel species of Haloferax, for which we propose the names Haloferax litoreum sp. nov., Haloferax marinisediminis sp. nov., and Haloferax marinum sp. nov., respectively. The respective type strains of these species are MBLA0076T (= KCTC 4288T = JCM 34,169T), MBLA0077T (= KCTC 4289T = JCM 34,170T), and MBLA0078T (= KCTC 4290T = JCM 34,171T).


Assuntos
Halobacteriaceae , Haloferax , DNA Arqueal/genética , Halobacteriaceae/genética , Haloferax/genética , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Água do Mar , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...